Acids and Bases Worksheet

1. Define Acid. Define Base.

Acid: A substance that releases H^{+}ions in solution.
Base: A substance that releases OH^{-}ions in solution.
2. As the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$increases, does pH increase or decrease? As the concentration of OH^{-} increases, does pH increase or decrease? Explain.

As $\mathrm{H}_{3} \mathrm{O}^{+}$increases, it increases the number of $\mathrm{H}+$ ions, and pH decreases (more acidic). As the concentration of OH^{-}increases, the pH increases (more basic).
3. Calculate the pH of antacid, given that the $\left[\mathrm{H}^{+}\right]$concentration $=0.000000001 \mathrm{M}$?

- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- $=-\log 0.000000001=-\log 10^{-9}$
- $=-(-9)=9$

4. Calculate the pH of blood, given that the $\left[\mathrm{H}^{+}\right]$concentration $=0.000000048 \mathrm{M}$?

- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- $=-\log 0.000000048=-\log 4.8 \times 10^{-8}$
- $=-(-7.32)=7.32$

5. What is the $[\mathrm{H}+]$ concentration of tomato juice $(\mathrm{pH}=5)$?

- $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$
- $=10^{-5}$
- $\quad=0.00001 \mathrm{M}$

6. What is the $[\mathrm{H}+]$ concentration of seawater $(\mathrm{pH}=7.85)$?

- $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$
- $\quad=10^{-7.85}=1.4 \times 10^{-8}$
- $=0.000000014 \mathrm{M}$

7. If it takes 25.30 mL of 0.277 M HCl to titrate 10.0 mL of aqueous ammonia to a methyl red endpoint, what is the molarity of the ammonia?
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$25.30 \mathrm{~mL} \times 0.277 \mathrm{~mol} \mathrm{HCl} / 1000 \mathrm{~mL}$ solution $\times 1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{OH} / 1 \mathrm{~mol} \mathrm{HCl}=0.00701 \mathrm{NH}_{4} \mathrm{OH}$
$0.00701 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{OH} / 10.0 \mathrm{~mL}$ solution $\times 1000 \mathrm{~mL}$ solution $/ 1 \mathrm{~L}$ solution $=0.701 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{OH} / 1 \mathrm{~L}$ solution $=$ $0.701 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
