Thermochemistry Worksheet

Heat capacity	Heat to cause temp change	Enthalpy
Heat capacity(J/°C) = <i>mc</i>	$q=m\times c\times \Delta T$	H=E+PV
		ΔH reaction= H products- H reactants
m = mass of the material	q = amount of heat added to the system	H=enthalpy
a -the specific heat of the material	m = mass of the substance	E=internal energy
c = the specific field of the material	c = specific heat of the substance	P=pressure
	ΔT =change in temperature.	V=volume

- 1. Calculate the amount of heat needed to increase the temperature of 125 g of water from 22°C to 59°C (Specific heat of water is 4.184 J/g-°C).
- 2. Calculate the specific heat of copper, given that 204.75 J of energy raises the temperature of 15 g of copper from 35°C to 70°C.
- 3. 432 J of energy is required to raise the temperature of a block of aluminum from 20°C to 60°C. Calculate the mass of aluminum present.
- **4.** Calculate ΔH_{rxn} for the reaction: 2CO(g) + O₂(g) \rightarrow 2CO₂(g) [ΔH_f of CO= -110.5 kJ/mol, ΔH_f of O₂= 0 kJ/mol, ΔH_f of CO₂= -393.5 kJ/mol]. Is this reaction Exothermic or Endothermic?
- 5. A pure gold ring and pure silver ring have a total mass of 17.0 g. The two rings are heated to 65.4 °C and dropped into 12.4 mL of water at 22.3 °C. When equilibrium is reached, the temperature of the water is 24.7 °C. What is the mass of the gold ring? [C_p gold= 0.129 J g⁻¹ °C⁻¹, C_p silver= 0.237 J g⁻¹ °C⁻¹]