Thermochemistry Worksheet

Heat capacity	Heat to cause temp change	Enthalpy
Heat capacity(J/°C) =mc	$q=m\times c\times \Delta T$	H=E+PV
		ΔH reaction=Hproducts-Hreactants
m = mass of the material	q = amount of heat added to the system	H=enthalpy
<i>c</i> =the specific heat of the material	m = mass of the substance	E=internal energy
	c = specific heat of the substance	P=pressure
	ΔT =change in temperature.	V=volume

 Calculate the amount of heat needed to increase the temperature of 125 g of water from 22°C to 59°C (Specific heat of water is 4.184 J/g-°C).

```
q=m×c×ΔT
```

```
q=(125 g)( 4.184 J/g-°C)(59°C -22°C) = 19,351 J
```

2. Calculate the specific heat of copper, given that 204.75 J of energy raises the temperature of 15 g of copper from 35°C to 70°C.

 $q=m\times c\times \Delta T$ $c=q/m\times \Delta T$

c=(204.75 J)/(15g)(70°C -35°C) = 0.39 J/g-°C

432 J of energy is required to raise the temperature of a block of aluminum (c_{alum}= 0.89 J °C[−] ¹ g^{−1}) from 20°C to 60°C. Calculate the mass of aluminum present.

 $q=m\times c\times \Delta T$ $m=q/c\times \Delta T$

m=(432 J)/(0.089 J/g-°C)(60°C -20°C) = 121.3g

4. Calculate ΔH_{rxn} for the reaction: 2CO(g) + O₂(g) \rightarrow 2CO₂(g) [ΔH_f of CO= -110.5 kJ/mol, ΔH_f of O₂= 0 kJ/mol, ΔH_f of CO₂= -393.5 kJ/mol]. Is this reaction Exothermic or Endothermic?

 $\Delta H \text{reaction} = H \text{products} - H \text{reactants}$

 $\Delta H_{reaction} = H_{CO2} - [2H_{co} + H_{o2}]$

 Δ Hreaction= -393.5 -[2(-110.5) + 0] = -172.5 kJ/mol

Exothermic

5. A pure gold ring and pure silver ring have a total mass of 17.0 g. The two rings are heated to 65.4 °C and dropped into 12.4 mL of water at 22.3 °C. When equilibrium is reached, the temperature of the water is 24.7 °C. What is the mass of the gold ring? $[C_p \text{ gold}= 0.129 \text{ J g}^{-1} \text{ °C}^{-1}, C_p \text{ silver}= 0.237 \text{ J g}^{-1} \text{ °C}^{-1}]$

(mass gold) (Δt gold) (C_p gold) + (mass silver) (Δt silver) (C_p silver) = (mass water) (Δt water) (C_p water)

(x) (40.7 °C) (0.129 J g^{-1} °C⁻¹) + (17.0 g - x) (40.7 °C) (0.237 J g^{-1} °C⁻¹) = (12.4 g) (2.4 °C) (4.184 J g^{-1} °C⁻¹)

x = 8.98 g